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1 KERNEL GRADIENT CORRECTION

Computing the deformation gradient using the standard SPH gradient in Eq. (6) leads to artifacts

since it is not 1st-order consistent. To solve this problem we analyze the error of Eq. (6) by replacing

�(X9 ) with its Taylor approximation at the point X8∑
9 ∈N0
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where X98 = X9 −X8 and ⊗ denotes the dyadic product of two vectors a ⊗ b = ab
) . To solve for ∇�

we subtract the �rst and third term and multiply with the inverse of the matrix from the second

term. This yields a 1st-order consistent approximation of the gradient

∇�8 ≈
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with the correction matrix [Bonet and Lok 1999]
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2 Kugelstadt et al.

1.1 Computation of Matrix D8

The matrix D8 ∈ R
9×3= , which was introduced in Eq. (12) to compute the deformation gradient, is a

block matrix which is typically sparse. It has a 9 × 3 block for the particle 8 starting at column 38:

(D8 )0,38 = −
∑
9 ∈N0
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and one 9 × 3 block for each rest-pose neighbor particle 9 starting at column 3 9 :

(D8 )0,39 = +9
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Note that all components of the matrix D8 only depend on quantities from the rest pose which

means that they are constant during the simulation.

1.2 Computation of Matrix H8 9

In Eq. (21) the matrix H8 9 ∈ R
3×3= was introduced to compute the error vectors E8

8 9 . H8 9 is also a

block matrix and typically sparse. It has the a 3 × 3 block for particle 8 starting at column 38:

(H8 9 )0,38 = −
∑
:∈N0

8
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)
X8 91 − 1. (5)

For the rest-pose neighbor particle 9 = : we get

(H8 9 )0,39 = +:
(
L8∇,8 9

))
X8 91 + 1, (6)

and �nally for the neighbor particle : ≠ 9 we get

(H8 9 )0,3: = +: (L8∇,8: )
)
X8 91. (7)

Note that the matrix H8 9 is constant during the simulation since its components only depend on

quantities from the rest pose.
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